
Towards Dependable Data Repairing with Fixing Rules

Jiannan Wang
∗

UC Berkeley
Berkeley, CA, USA

jnwang@eecs.berkeley.edu

Nan Tang
Qatar Computing Research Institute (QCRI)

Doha, Qatar
ntang@qf.org.qa

ABSTRACT
One of the main challenges that data cleaning systems face is
to automatically identify and repair data errors in a depend-
able manner. Though data dependencies (a.k.a. integrity
constraints) have been widely studied to capture errors in
data, automated and dependable data repairing on these
errors has remained a notoriously hard problem. In this
work, we introduce an automated approach for dependably
repairing data errors, based on a novel class of fixing rules.
A fixing rule contains an evidence pattern, a set of nega-
tive patterns, and a fact value. The heart of fixing rules is
deterministic: given a tuple, the evidence pattern and the
negative patterns of a fixing rule are combined to precisely
capture which attribute is wrong, and the fact indicates how
to correct this error. We study several fundamental prob-
lems associated with fixing rules, and establish their com-
plexity. We develop efficient algorithms to check whether
a set of fixing rules is consistent, and discuss approaches
to resolve inconsistent fixing rules. We also devise efficient
algorithms for repairing data errors using fixing rules. We
experimentally demonstrate that our techniques outperform
other automated algorithms in terms of the accuracy of re-
pairing data errors, using both real-life and synthetic data.

1. INTRODUCTION
Data quality is essential to all businesses, which demands

dependable data cleaning solutions. Traditionally, data de-
pendencies (a.k.a. integrity constraints) have been widely
studied to capture errors from semantically related values.
However, automated and dependable data repairing on these
data errors has remained a notoriously hard problem.

A number of recent research [4, 7, 10] have investigated
the data cleaning problem introduced in [2]: repairing is to
find another database that is consistent and minimally dif-
fers from the original database. They compute a consistent
database by using different cost functions for value updates
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name country capital city conf
r1: George China Beijing Beijing SIGMOD

r2: Ian China Shanghai Hongkong ICDE

(Beijing) (Shanghai)
r3: Peter China Tokyo Tokyo ICDE

(Japan)
r4: Mike Canada Toronto Toronto VLDB

(Ottawa)

Figure 1: Database D: an instance of schema Travel

and various heuristics to guide repairing. However, it is
known that such heuristics might introduce data errors [19].
In order to ensure that a repair is dependable, users are in-
volved in the process of data repairing [19, 26, 28], which is
usually time-consuming and cumbersome.

In response to practical need for automated and depend-
able data repairing, in this work, we propose new data clean-
ing algorithms, based on a class of fixing rules. Given a
tuple, fixing rules are designed to precisely capture which
attribute is wrong, and specify what value it should take.

Motivating example. We first illustrate by examples how
existing solutions work. We then motivate our approach.

Example 1: Consider a database D of travel records for a
research institute, specified by the following schema:

Travel (name, country, capital, city, conf),

where a Travel tuple specifies a person, identified by name,
who has traveled to conference (conf), held at the city of the
country with capital. One Travel instance is shown in Fig. 1.
All errors are highlighted and their correct values are given
between brackets. For instance, r2[capital] = Shanghai is
wrong, whose correct value is Beijing. 2

We next describe how existing methods work.

Data dependencies. A variety of data dependencies have
been used to capture errors in data, from traditional con-
straints (e.g., functional and inclusion dependencies [7, 9])
to their extensions (e.g., conditional functional dependen-
cies [15]). Suppose that a functional dependency (FD) is
specified for the Travel table as:

φ1: Travel ([country]→ [capital])

which states that country uniquely determines capital. One
can verify that in Fig. 1, the two tuples (r1, r2) violate φ1,
since they have the same country but carry different capital
values, so do (r1, r3) and (r2, r3).

In order to compute a consistent database w.r.t. φ1

with the minimum cost (e.g., the number of changes),



country capital
s1: China Beijing

s2: Canada Ottawa

s3: Japan Tokyo

Figure 2: Data Dm of schema Cap

country {capital−} capital+

ϕ1: China Shanghai Beijing

Hongkong

country {capital−} capital+

ϕ2: Canada Toronto Ottawa

Figure 3: Example fixing rules

many algorithms have been presented [2, 5, 7, 10, 11, 19, 20].
For instance, they can change r2[capital] from Shanghai to
Beijing, and r3[capital] from Tokyo to Beijing, which re-
quires two changes. One may verify that this is a repair with
the minimum cost of two updates. Though these changes
correct the error in r2[capital], they do not rectify r3[country].
Worse still, they mess up the correct value in r3[capital].

User guidance. While using data dependencies to detect er-
rors is appropriate, dependencies on their own are not suffi-
cient to guide dependable data repairing. To improve the ac-
curacy of data repairing, users have been involved [19,23,28]
and master data (a.k.a. reference data) has been used [19].

Consider a recent work [19] that uses editing rules and
master data. Figure 2 shows a master data Dm of schema
Cap (country, capital), which is considered to be correct. An
editing rule eR1 defined on two relations (Travel,Cap) is:

eR1 : ((country, country)→ (capital, capital), tp1[country] = ())

Rule eR1 states that: for any tuple r in a Travel table,
if r[country] is correct and it matches s[country] from a Cap
table, we can update r[capital] with the value s[capital] from
Cap. For instance, to repair r2 in Fig. 1, the users need to
ensure that r2[country] is correct, and then match r2[country]
and s1[country] in the master data, so as to update r2[capital]
to s1[capital]. It proceeds similarly for the other tuples.

Key challenge & observation. The above examples tell
us that data dependencies can detect errors but fall short of
automatically guiding data repairing, while involving users is
generally cost-ineffective. Hence, one of the main challenges
in data cleaning is how to automatically detect and repair
errors in a dependable manner.

Data cleaning is not magic; it cannot guess something
from nothing. What it does is to make decisions from evi-
dence. Certain data patterns of semantically related values
can provide evidence to precisely capture and rectify data
errors. For example, when values (China, Shanghai) for
attributes (country, capital) appear in a tuple, it suffices to
judge that the tuple is about China, and Shanghai should
be Beijing, the capital of China. In contrast, the values
(China, Tokyo) are not enough to decide which value is
wrong.

Fixing rules. Motivated by the observation above, in this
work, we address the problem of automatically finding de-
pendable repairs, by using fixing rules. A fixing rule contains
an evidence pattern, a set of negative patterns, and a fact
value. Given a tuple, the evidence pattern and the negative
patterns of a fixing rule are combined to precisely tell which
attribute is wrong, and the fact indicates how to correct it.

Example 2: Figure 3 shows two fixing rules. The brackets
mean that the corresponding cell is multivalued.

For the first fixing rule ϕ1, its evidence pattern, negative
patterns and the fact are China, {Shanghai, Hongkong},
and Beijing, respectively. It states that for a tuple t, if
its country is China and its capital is either Shanghai or
Hongkong, capital should be updated to Beijing. For in-
stance, consider the database in Fig. 1. Rule ϕ1 detects that

r2[capital] is wrong, since r2[country] is China, but r2[capital]
is Shanghai. It will then update r2[capital] to Beijing.

Similarly, the second fixing rule ϕ2 states that for a tuple
t, if its country is Canada, but its capital is Toronto, then
its capital is wrong and should be Ottawa. It detects that
r4[capital] is wrong, and then will correct it to Ottawa.

After applying ϕ1 and ϕ2, two errors, r2[capital] and
r4[capital], can be repaired. The other two errors, r2[city]
and r3[country], still remain. We will discuss later how they
are repaired, when more fixing rules are available. 2

Remark. Fixing rules are designed to both capture seman-
tic errors for specific domains (e.g., (China, Shanghai) is an
error for (country, capital)), and specify how to fix it (e.g.,
change Shanghai to Beijing), in a deterministic and de-
pendable manner. They are also conservative: they tend to
avoid repairing ambiguous errors such as (China, Tokyo),
which is also difficult for users to repair since it could be
either (China, Beijing) or (Japan, Tokyo).

Contributions. We propose a framework for automatically
and dependably repairing data errors.

(1) We formally define fixing rules and their repairing se-
mantics (Section 3). Given a tuple t, fixing rules tell us
which attribute is wrong and what value it should take.

(2) We study fundamental problems of fixing rules (Sec-
tion 4). Specifically, given a set Σ of fixing rules, we deter-
mine whether these rules have conflicts. We show that this
problem is in PTIME. We also study the problem of whether
some other fixing rules are implied by Σ. We show that this
problem is coNP-complete, but it is down to PTIME when
the relation schema is fixed.

(3) We develop efficient algorithms to check whether a set
of fixing rules is consistent i.e., conflict-free (Section 5). We
also discuss solutions to resolve inconsistent fixing rules.

(4) We propose two repairing algorithms for a given set Σ of
fixing rules (Section 6). The first algorithm is chase-based.
It runs in O(size(Σ)|R|) for one tuple, where |R| is the car-
dinality of R and size(Σ) is the size of Σ. The second one is
a fast linear algorithm that runs in O(size(Σ)) for one tuple,
by interweaving inverted lists and hash counters.

(5) We experimentally verify the effectiveness and scalabil-
ity of the proposed algorithms (Section 7). We find that
algorithms with fixing rules can repair data with high preci-
sion. In addition, they scale well with the number of fixing
rules. One natural concern is how to generate fixing rules.
Inspired by the work of [27], we show how a large number
of fixing rules can be obtained from examples.

Organization. Section 2 discusses related work. Section 3
introduces fixing rules. Section 4 studies fundamental prob-
lems for fixing rules. Section 5 describes algorithms to check
consistency of fixing rules and ways to resolve inconsistent
rules. Section 6 presents repairing algorithms using fixing
rules. Section 7 reports our experimental findings, followed
by conclusion in Section 8.



2. RELATED WORK
Despite the need for dependable algorithms to automati-

cally repair data, there has been little discussion about data
cleaning solutions that can both capture semantic data er-
rors, and explicitly specify an action to correct these errors,
without interacting with users, and without any assumption
about confidence values placed on the data.

In recent years, there has been an increasing amount
of literature on using data dependencies in cleaning data
(e.g., [2, 8, 9, 15, 16, 22]; see [14] for a survey). They have
been revisited to better capture data errors as violations of
these dependencies (e.g., CFDs [15] and CINDs [8]). As re-
marked earlier, fixing rules differ from those dependencies
in that fixing rules can not only detect semantic errors, but
also explicitly specify how to fix these errors.

Editing rules [19] have been introduced for the process of
data monitoring to repair data that is guaranteed correct.
However, editing rules require users to examine every tuple,
which is expensive. Fixing rules differ from them in that
they do not depend on users to trigger repairing operations.
Instead, fixing rules use both evidence pattern and negative
patterns to automatically trigger repairing operations.

Data repairing algorithms have been proposed [6,7,10–13,
18–20, 23, 28]. Heuristic methods are developed in [5, 7, 11,
20], based on FDs [5,22], FDs and inds [7], CFDs [15], CFDs

and MDs [18], denial constraints [10] and editing rules [20].
Some works employ confidence values placed by users to
guide a repairing process [7, 11, 18] or use master data [19].
Statistical inference is studied in [23] to derive missing val-
ues, and in [6] to find possible repairs. To ensure the ac-
curacy of generated repairs, [19, 23, 28] require to consult
users. In contrast to these prior art, (1) fixing rules are
more conservative to repair data, which target at determin-
ism and dependability, instead of computing a consistent
database; (2) we neither consult the users, nor assume the
confidence values placed by the users. Indeed, our method
can be treated as a complementary technique to heuristic
methods i.e., one may compute dependable repairs first and
then use heuristic solutions to find a consistent database.

There has also been a lot of work on more general data
cleaning: data transformation, which brings the data under
a single common schema [24]. ETL tools (see [3, 21] for a
survey) provide sophisticated data transformation methods,
which can be employed to merge data sets and repair data
based on reference data. Some recent work has been studied
for semantic transformations [27] of strings. However, they
are designed for value transformation instead of capturing
semantic errors as fixing rules do. Hence, they can be treated
as an orthogonal technique which prepares data that is in
turn to be repaired by other data cleaning approaches.

3. FIXING RULES
In this section, We first give the formal definition of fixing

rules and their semantics (Section 3.1). We then describe
the repairing semantics for a set of fixing rules (Section 3.2).

3.1 Definition
Consider a schema R defined over a set of attributes, de-

noted by attr(R). We use A ∈ R to denote that A is an
attribute in attr(R). For each attribute A ∈ R, its domain
is specified in R, denoted as dom(A).

Syntax. A fixing rule ϕ defined on a schema R is formalized
as ((X, tp[X]), (B, T−p [B]))→ t+p [B] where

1. X is a set of attributes in attr(R), and B is an attribute
in attr(R) \X (i.e., B is not in X);

2. tp[X] is a pattern with attributes in X, referred to as
the evidence pattern on X, and for each A ∈ X, tp[A]
is a constant value in dom(A);

3. T−p [B] is a finite set of constants in dom(B), referred
to as the negative patterns of B; and

4. t+p [B] is a constant value in dom(B) \ T−p [B], referred
to as the fact of B.

Intuitively, the evidence pattern tp[X] of X, together with
the negative patterns T−p [B] impose the condition to deter-
mine whether a tuple contains an error on B. The fact t+p [B]
in turn indicates how to correct this error.

Note that condition (4) enforces that the correct value
(i.e., the fact) is different from known wrong values (i.e.,
negative patterns) relative to a specific evidence pattern.

We say that a tuple t of R matches a rule ϕ :
((X, tp[X]), (B, T−p [B])) → t+p [B], denoted by t ` ϕ, if (i)
t[X] = tp[X] and (ii) t[B] ∈ T−p [B]. In other words, tuple t
matches rule ϕ indicates that ϕ can identify errors in t.

Example 3: Consider the fixing rules in Fig. 3. They can
be formally expressed as follows:

ϕ1: (([country], [China]), (capital, {Shanghai, Hongkong}))
→ Beijing

ϕ2: (([country], [Canada]), (capital, {Toronto}))→ Ottawa

In both ϕ1 and ϕ2, X consists of country and B is capital.
Here, ϕ1 states that, if the country of a tuple is China and its
capital value is in {Shanghai, Hongkong}, its capital value is
wrong and should be updated to Beijing. Similarly for ϕ2.

Consider D in Fig. 1. Tuple r1 does not match
rule ϕ1, since r1[country] = China but r1[capital] 6∈
{Shanghai, Hongkong}. As another example, tuple
r2 matches rule ϕ1, since r2[country] = China, and
r2[capital] ∈{Shanghai, Hongkong}. Similarly, we have r4

matches ϕ2. 2

Semantics. We next give the semantics of fixing rules.
We say that a fixing rule ϕ is applied to a tuple t, denoted

by t →ϕ t′, if (i) t matches ϕ (i.e., t ` ϕ), and (ii) t′ is
obtained by the update t[B] := t+p [B].

That is, if t[X] agrees with tp[X], and t[B] appears in the
set T−p [B], then we assign t+p [B] to t[B]. Intuitively, if t[X]
matches tp[X] and t[B] matches some value in T−p [B], it is
evident to judge that t[B] is wrong and we can use the fact
t+p [B] to update t[B]. This yields an updated tuple t′ with
t′[B] = t+p [B] and t′[R \ {B}] = t[R \ {B}].
Example 4: As shown in Example 2, we can correct r2 by
applying rule ϕ1. As a result, r2[capital] is changed from
Shanghai to Beijing, i.e., r2 →ϕ1 r′2 where r′2[capital] =
Beijing and the other attributes of r′2 remain unchanged.

Similarly, we have r4→ϕ2r
′
4 where the only updated at-

tribute value is r′4[capital] = Ottawa. 2

Remark. (1) Fixing rules are different from traditional data
dependencies e.g., FDs [1] and CFDs [15]. Data dependencies
only detect violations. In contrast, a fixing rule ϕ specifies
an action: applying ϕ to a tuple t yields an updated t′.

(2) Editing rules [19] also have dynamic semantics. However,



they differ in the way of repairing errors. (a) Editing rules
need users to trigger the action of repairing. That is, when
matching some values from dirty data to values in master
data, editing rules by themselves cannot tell if the values
used for matching are correct, without which the repairing
operation cannot be executed. (b) Fixing rules encode ev-
idence pattern and negative patterns to decide the correct
and erroneous values, which then automatically triggers the
repair operation. Please see Example 2 for more details.

(3) We have also investigated on how to get fixing rules.
Inspired by the work of [27] that learns transformation rules
from examples, we discuss in Section 7 how to generate fixing
rules from examples.

Notations. For convenience, we introduce some notations.
Given fixing rule ϕ : ((X, tp[X]), (B, T−p [B]))→ t+p [B], we
denote by Xϕ the set X of attributes in ϕ. Similarly, we
write tp[Xϕ], Bϕ, T−p [Bϕ] and t+p [Bϕ], relative to ϕ.

3.2 Repairing Semantics with Fixing Rules
We next describe the semantics of applying a set of fixing

rules. Note that when applying a fixing rule ϕ to a tuple
t, we update t[Bϕ] with t+p [Bϕ]. To ensure that the change
makes sense, the corrected values should remain unchanged
in the following process. That is, after applying ϕ to t, the
set Xϕ ∪ {Bϕ} of attributes should be marked as correct.

In order to keep track of the set of attributes that has been
marked correct, we introduce the notion assured attributes
to represent them, denoted by At relative to tuple t. We
simply write A when t is clear from the context.

We say that a fixing rule ϕ is properly applied to a tuple
t w.r.t. the assured attributes A, denoted by t→(A,ϕ) t

′, if
(i) t matches ϕ, and (ii) Bϕ 6∈ A.

That is, it is justified that to apply ϕ to t, for those t
match ϕ, is correct. As A has been assured, we do not allow
it to be changed by enforcing Bϕ 6∈ A (condition (ii)).

Example 5: Consider the fixing rule ϕ1 in Example 3 and
the tuple r2 in Fig. 1. Initially, Ar2 = ∅. The rule ϕ1 can be
properly applied to r2 w.r.t. Ar2 , since r2[country] = China

and r2[capital] = Shanghai ∈ {Shanghai, Hongkong} (i.e.,
r2 matches ϕ1); and moreover, capital 6∈ Ar2 . This yields an
updated tuple r′2 where r′2[capital] = Beijing. 2

Observe that if t →(A,ϕ) t
′, then Xϕ and Bϕ will also be

marked correct. Thus, the assured attributes A should be
extended as well, to become A ∪Xϕ ∪ {Bϕ}.
Example 6: Consider Example 5. After ϕ1 is applied to
r2, the assured attribute Ar2 will be expanded correspond-
ingly, by including Xϕ1 (i.e., {country}) and {Bϕ1} (i.e.,
{capital}), which results in an expanded assured attribute
set Ar2 = {country, capital}. 2

We write t
=−→(A,ϕ) t if ϕ cannot be properly applied to t,

i.e., t is unchanged by ϕ relative to A, if either t does not
match ϕ, or Bϕ ∈ A.

Consider a set Σ of fixing rules defined on R. Given a
tuple t of R, we want a unique fix of t by using Σ. That is,
no matter in which order the fixing rules of Σ are properly
applied, Σ yields a unique t′ by updating t.

To formalize the notion of unique fixes, we first recall
the repairing semantics of fixing rules. Notably, if ϕ is
properly applied to t via t →(A,ϕ) t′ w.r.t. assured at-

tributes A, it yields an updated t′ where t[Bϕ] ∈ T−p [Bϕ]
and t′[Bϕ] = t+p [Bϕ]. More specifically, the fixing rule ϕ first
identifies t[Bϕ] as incorrect, and as a logical consequence of

the application of ϕ, t[Bϕ] will be updated to t+p [Bϕ], as a
validated correct value in t′. Once an attribute value t′[B]
is validated, we do not allow it to be changed, together with
the attributes Xϕ that are used as the evidence to assert
that t[Bϕ] is incorrect.

Fixes. We say that a tuple t′ is a fix of t w.r.t. a set Σ of fix-
ing rules, if there exists a finite sequence t = t0, t1, . . . , tk =
t′ of tuples of R such that for each i ∈ [1, k], there ex-
ists a ϕi ∈ Σ such that (1) ti−1→(Ai,ϕi) ti, where A1 = ∅,
Ai =Ai−1∪Xϕi∪{Bϕi}; and (2) for any ϕ ∈ Σ, t′

=−→(Ak,ϕ) t
′.

Condition (1) ensures that each step of the process is jus-
tified, i.e., a fixing rule is properly applied. Condition (2)
ensures that t′ is a fixpoint and cannot be further updated.

We write t
∗−→(A,Σ) t

′ to denote that t′ is a fix of t.

Unique fixes. We say that an R tuple t has a unique fix
by a set Σ of fixing rules if there exists a unique t′ such that

t
∗−→(∅,Σ) t

′.

Example 7: Consider Example 5. Indeed, r′2 is a fix of r2

w.r.t. rules ϕ1 and ϕ2 in Example 3, since no rule can be
properly applied to r′2, given the assured attributes to be
{country, capital}.

Moreover, r′2 is also a unique fix, since one cannot get a
tuple different from r′2 when trying to apply rules ϕ1 and ϕ2

on tuple r2 in other orders. 2

4. FUNDAMENTAL PROBLEMS
We next identify fundamental problems associated with

fixing rules, and establish their complexity.

4.1 Termination
One natural question associated with rule based data re-

pairing processes is the termination problem that determines
whether a rule-based process will stop. In fact, it is readily
to verify that the fix process, by applying fixing rules (see
Section 3.2), always terminates.

Consider the following. For a sequence of updates
t0 →(A1,ϕ1) t1 . . . →(Ai,ϕi) ti . . ., each time a fixing rule
ϕi (i ≥ 1) is applied as ti−1 →(Ai,ϕi) ti, the number of val-
idated attributes in A is strictly increasing up to |R|, the
cardinality of schema R.

4.2 Consistency
The problem is to decide whether a set Σ of fixing rules

does not have conflicts. We say that Σ is consistent if for
any input tuple t of R, t has a unique fix by Σ.

Example 8: Consider a fixing rule ϕ′1 by adding a negative
pattern to the ϕ1 in Example 3 as the following:

ϕ′1: (([country], [China]), (capital,
{Shanghai, Hongkong, Tokyo})) → Beijing

The revised rule ϕ′1 states that, for a tuple, if its country is
China and its capital value is Shanghai, Hongkong or Tokyo,
its capital is wrong and should be updated to Beijing.

Consider another fixing rule ϕ3 as: for t in relation Travel,
if the conf is ICDE, held at city Tokyo and capital Tokyo, but
the country is China, its country should be updated to Japan.
This fixing rule can be formally expressed below:

ϕ3: (([capital, city, conf], [Tokyo, Tokyo, ICDE]),
(country, {China}))→ Japan

We show that these two fixing rules, ϕ′1 and ϕ3, are in-
consistent. Consider the tuple r3 in Fig. 1. Both ϕ′1 and ϕ3

can be applied to r3. It has the following two fixes:



(1) r3 →(∅,ϕ′1) r
′
3: it will change attribute r3[capital] from

Tokyo to Beijing. This will result in an updated tuple as:

r′3: (Peter, China, Beijing , Tokyo, ICDE).

It also marks attributes {country, capital} as assured, such
that ϕ3 cannot be properly applied, i.e., r′3 is a fixpoint.

(2) r3 →(∅,ϕ3) r
′′
3 : it will update r3[country] from China to

Japan. This will yield another updated tuple as:

r′′3 : (Peter, Japan, Tokyo , Tokyo, ICDE).

The attributes {country, capital, conf} will be marked as
assured, such that ϕ′1 cannot be properly applied, i.e., r′′3 is
also a fixpoint.

Observe that the above two fixes (i.e., r′3 and r′′3 ) will
lead to different fixpoints, where the difference is highlighted
above. Therefore, ϕ′1 and ϕ3 are inconsistent. Indeed, r′3
contains errors while r′′3 is correct. 2

Consistency problem. The consistency problem is to de-
termine, given a set Σ of fixing rules defined on R, whether
Σ is consistent.

Intuitively, this is to determine whether the rules in Σ
are dirty themselves. The practical need for the consistency
analysis is evident: we cannot apply these rules to clean data
before Σ is ensured consistent itself.

This problem has been studied for CFDs, MDs, and editing
rules. It is known that the consistency problem for MDs [17]
is trivial: any set of MDs is consistent [18]. They are NP-
complete (resp. coNP-complete) for CFDs [15] (resp. editing
rules [19]). We shall show that the problem for fixing rules
is PTIME, lower than their editing rules counterparts.

Theorem 1: The consistency problem of fixing rules is
PTIME. 2

We prove Theorem 1 by providing a PTIME algorithm for
determining if a set of fixing rules is consistent in Section 5.2.

The low complexity from the consistency analysis tells us
that it is feasible to efficiently find consistent fixing rules.

4.3 Implication
Given a set Σ of consistent fixing rules, and another fixing

rule ϕ that is not in Σ, we say that ϕ is implied by Σ, denoted
by Σ |= ϕ, if (i) Σ∪{ϕ} is consistent; and (ii) for any input

t where t
∗−→Σ t′ and t

∗−→Σ∪{ϕ} t
′′, t′ and t′′ are the same.

Condition (i) says that Σ and ϕ must agree on each other.
Condition (ii) ensures that for any tuple t, applying Σ or
Σ∪{ϕ} will result in the same updated tuple, which indicates
that ϕ is redundant.

Implication problem. The implication problem is to de-
cide, given a set Σ of consistent fixing rules, and another
fixing rule ϕ, whether Σ implies ϕ.

Intuitively, the implication analysis helps us find and re-
move redundant rules from Σ, i.e., those that are a logical
consequence of other rules in Σ, to improve performance.

No matter how desirable it is to remove redundant rules,
unfortunately, the implication problem is coNP-complete.

Theorem 2: The implication problem of fixing rules is
coNP-complete. It is down to PTIME when the relation
schema R is fixed. 2

Proof sketch: (A) General case. Lower bound. We
show the implication problem is coNP-hard by reduction
from the 3SAT problem, which is NP-complete [25], to the
complement of the implication problem.

Upper bound. To show it is in coNP, we first establish a
small model property: a set Σ of fixing rules is consistent if
and only if for any tuple t of R consisting of values appeared
in Σ, t has a unique fix by Σ. We then give an NP algorithm
to its complement problem that first guesses a tuple t with
values appear in Σ and then checks whether t has a unique
fix by Σ in PTIME.

(B) Special case: when R is fixed. We show that for
fixed R, only a polynomially number of tuples need to be
guessed and checked with a PTIME algorithm. Thus it is
down to PTIME in this special case. 2

Details are omitted due to space constraints.

4.4 Determinism
Determinism problem. The determinism problem asks
whether all terminating cleaning processes end up with the
same repair.

From the definition of consistency of fixing rules, it is triv-
ial to get that, if a set Σ of fixing rules is consistent, for any
t of R, applying Σ to t will terminate, and the updated t′ is
deterministic (i.e., a unique result).

5. ENSURING CONSISTENCY
Our next goal is to study methods for identifying con-

sistent rules. We first describe the workflow for obtaining
consistent fixing rules (Section 5.1). We then present al-
gorithms to check whether a given set of rules is consistent
(Section 5.2). We also discuss how to resolve inconsistent fix-
ing rules, and ensure the workflow terminates (Section 5.3).

5.1 Overview
Given a set Σ of fixing rules, our workflow contains the

following three steps to obtain a set Σ′ of fixing rules that
is ensured to be consistent.

Σ // step1 NO //

YES
((

step2
ii

step3 //Σ′

Step 1: It checks whether the given Σ of fixing rules is con-
sistent. If it is inconsistent, it goes to step (2). Otherwise,
it goes to step (3).

Step 2: We allow either an automatic algorithm or experts
to examine and resolve inconsistent fixing rules. After some
rules are revised, it will go back to step (1).

Step 3: It terminates when the set Σ′ of (possibly) modified
fixing rules is consistent.

It is desirable that the users are involved in step (2) when
resolving inconsistent rules, in order to obtain high quality
fixing rules.

5.2 Checking Consistency
We first present a proposition, which is important to de-

sign efficient algorithms for checking consistency.

Proposition 3: For a set Σ of fixing rules, Σ is consistent,
iff any two fixing rules ϕi and ϕj in Σ are consistent. 2

Proof sketch: Let n be the number of rules in Σ. When
n = 1, Σ is trivially consistent. When n = 2, Σ is consistent
is the same as ϕi and ϕj are consistent (i 6= j). When n ≥ 3,
we prove by contradiction.

⇒ Suppose that although the fixing rules are pairwise con-
sistent, when putting together, they are inconsistent. In



other words, they may lead to (at least) two different fixes,
i.e., the fixes are not unique. More concretely, there exist
(at least) two non-empty sequences of fixes as follows:
S1 : t = t0 →(∅,ϕ1) t1 . . . →(Ai−1,ϕi)

ti . . . →(Am−1,ϕm) tm = t′

S2 : t = t′0 →(∅,ϕ′1) t′1 . . . →(A′j−1,ϕ
′
j) t′j . . . →(A′n−1,ϕ

′
n) t′n = t′′

We consider the following three cases: (i) Am ∩ A′n = ∅;
(ii) Am ∩ A′n 6= ∅ and t′[Am ∩ A′n] = t′′[Am ∩ A′n]; and
(iii) Am ∩ A′n 6= ∅ and t′[Am ∩ A′n] 6= t′′[Am ∩ A′n], where
Am = Am−1∪Xϕm∪{Bϕm} and A′n = A′n−1∪Xϕ′n∪{Bϕ′n}.

For cases (i)(ii), we prove that either S1 or S2 does not
reach a fixpoint, i.e., it is not a fix. For case (iii), we show
that there must exist a ϕi (in sequence S1) and a ϕ′j (in
sequence S2) that are inconsistent.

Putting all contradicting cases (i,ii,iii) together, it suffices
to see that we were wrong to assume that Σ is inconsistent.

⇐ Assume there exist inconsistent ϕi and ϕj . We show
that for any tuple t that leads to different fixes by ϕi and
ϕj , we can construct two fixes S′1 and S′2 on t by using the
rules in Σ. In S′1, ϕi is applied first; while in S′2, ϕj is
applied first. We prove that these two fixes must yield two
different fixpoints. This suffices to show that we were wrong
to assume that there exist inconsistent ϕi and ϕj . 2

Details are omitted due to space constraints.
Proposition 3 tells us that to determine whether Σ is con-

sistent, it suffices to only check them pairwise. This sig-
nificantly simplifies the problem and complexity of check-
ing consistency. Next, we describe two algorithms to check
the consistency of two fixing rules, by using the result from
Proposition 3. One algorithm is based on tuple enumeration,
while the other is through rule characterization.

5.2.1 Tuple enumeration
We first consider that whether there exists a finite set of

tuples such that it suffices to only inspect these tuples to de-
termine whether rules ϕi and ϕj are consistent or not. That
is, for the other tuples, neither ϕi nor ϕj can be applied.

To design an algorithm for tuple enumeration, let’s un-
derstand what tuples are necessary to be enumerated, and
in which cases tuple enumeration can be avoided.

Lemma 4: Fixing rules ϕi and ϕj are consistent, if there
does not exist any tuple t that matches both ϕi and ϕj. 2

Proof. If 6 ∃t such that t ` ϕi and t ` ϕj , for any t, there
are two cases: either no rule can be applied, or there exists
a unique sequence of applying both rules. Either case will
not cause different fixes, i.e., ϕi and ϕj are consistent.

Note that Lemma 4 is for “if” but not “iff”, which tells
us that only tuples that draw values from evidence pattern
and negative patterns can (possibly) match both rules at the
same time. Next we illustrate the tuples that are needed to
be generated by an example.

Example 9: Consider rules ϕ1 and ϕ2 in Exam-
ple 3. We have two constants in the evidence pattern as
{China, Canada}, and three constants in the negative pat-
terns as {Shanghai, Hongkong, Toronto}. Hence, we only
need to enumerate 2× 3 = 6 tuples for relation Travel:

(◦, China, Shanghai, ◦, ◦), (◦, China, Hongkong, ◦, ◦)
(◦, China, Toronto, ◦, ◦), (◦, Canada, Shanghai, ◦, ◦)
(◦, Canada, Hongkong, ◦, ◦), (◦, Canada, Toronto, ◦, ◦)

where ‘◦’ is a special character that is not in any active
domain, i.e., it does not match any constant. One can verify
that no other tuples can both match ϕ1 and ϕ2. 2

Let {A1, . . . , Am} be all attributes appearing in ϕi and
ϕj . Let Vϕij (A) denote the set of constant values of A that
appear either in evidence pattern or negative patterns of
ϕi and ϕj . The total number of tuples to be enumerated
is

∏
l∈[1,m](|Vϕij (Al)|), where

∏
indicates a product and

|Vϕij (Al)| denotes the cardinality of Vϕij (Al).
Given a set Σ of fixing rules, we check them pairwise (see

Example 8). If any pair of rules is inconsistent, we judge that
Σ is inconsistent; otherwise, Σ is consistent. This algorithm
is referred to as isConsistt.

5.2.2 Rule characterization
Now let’s shift gears and concentrate on a rather different

kind of analysis, by characterizing fixing rules and avoiding
enumerating tuples.

Also based on Lemma 4, let us focus on the cases of ϕi and
ϕj that there exists some t that can match both fixing rules,
i.e., it is possible that applying ϕi and ϕj on t in different
orders may result in different fixes. Assume that these rules
are represented as follows:

ϕi: ((Xi, tpi [Xi]), (Bi, T
−
pi [Bi]))→ t+pi [Bi]

ϕj : ((Xj , tpj [Xj ]), (Bj , T
−
pj [Bj ]))→ t+pj [Bj ]

Note that a tuple t matching ϕi and ϕj implies that
the following conditions hold: t[Xi] = tpi [Xi] and t[Xj ] =
tpj [Xj ]. Hence, we have tpi [Xi∩Xj ] = tpj [Xi∩Xj ], where a
special case is Xi∩Xj = ∅. We consider two cases: Bi = Bj

and Bi 6= Bj .

Case 1: Bi = Bj . Let B = Bi = Bj . There is a conflict only
when (i) there exists a tuple t that matches both ϕi and ϕj ,
and (ii) ϕi and ϕj will update t to different values. From
(i) we have t[B] ∈ T−pi [B] and t[B] ∈ T−pj [B], which gives

T−pi [B] ∩ T−pj [B] 6= ∅, i.e., they can be applied at the same

time. From (ii) we have t+pi [B] 6= t+pj [B], i.e., they lead to
different fixes. From (i) and (ii), the extra condition that ϕi

and ϕj are inconsistent under such case is (T−pi [B]∩T−pj [B] 6=
∅ and t+pi [B] 6= t+pj [B]).

Case 2: Bi 6= Bj . Again, we consider four cases: (a) Bi ∈
Xj and Bj 6∈ Xi, (b) Bi 6∈ Xj and Bj ∈ Xi, (c) Bi ∈ Xj

and Bj ∈ Xi, and (d) Bi 6∈ Xj and Bj 6∈ Xi.

(a) Bi ∈ Xj and Bj 6∈ Xi. If a tuple t matches ϕi and
ϕj , then (i) t[Bi] ∈ T−pi [Bi] (to match ϕi), and (ii)
t[Bi] = tpj [Bi] (to match ϕj). Observe the following: if
ϕj is applied to t first, since Bi ∈ Xj , it will keep t[Bi]
unchanged, whereas if ϕi is applied first, it will update
t[Bi] to a different value (i.e., t+pi [Bi]). This will cause
different fixes. Hence, ϕi and ϕj are inconsistent only
when tpj [Bi] ∈ T−pi [Bi] (by merging (i) and (ii)).

(b) Bi 6∈ Xj and Bj ∈ Xi. This is symmetric to
case (a). Therefore, ϕi and ϕj are inconsistent only
when tpi [Bj ] ∈ T−pj [Bj ].

(c) Bi ∈ Xj and Bj ∈ Xi. This is the combination of
cases (a) and (b). Thus, ϕi and ϕj are inconsistent
only when tpi [Bj ] ∈ T−pj [Bj ] and tpj [Bi] ∈ T−pi [Bi].

(d) Bi 6∈ Xj and Bj 6∈ Xi. For any tuple t that matches
both ϕi and ϕj , rule ϕi (resp. ϕj) will determin-
istically update t[Bi] (resp. t[Bj ]) to t+pi [Bi] (resp.

t+pj [Bj ]). That is, ϕi and ϕj are always consistent in
this case.

Example 10: Consider ϕ′1 and ϕ3 in Example 8 and ϕ2 in
Example 3.



Algorithm isConsistr

Input: a set Σ of fixing rules.
Output: true (consistent) or false (inconsistent).

1. for any two distinct ϕi, ϕj ∈ Σ do
2. if Xi ∩Xj = ∅ or tpi [Xi ∩Xj ] = tpj [Xi ∩Xj ] do
3. if Bi = Bj do

4. if T−pi [Bi] ∩ T−pj [Bi] 6= ∅ and t+pi [Bi] 6= t+pj [Bi] do
5. return false;

6. elseif Bi ∈ Xj and Bj 6∈ Xi and tpj [Bi] ∈ T−pi [Bi]
7. return false;

8. elseif Bj ∈ Xi and Bi 6∈ Xj and tpi [Bj ] ∈ T−pj [Bj ]
9. return false;

10. elseif Bj ∈ Xi and Bi ∈ Xj and tpi [Bj ] ∈ T−pj [Bj ]

and tpj [Bi] ∈ T−pi [Bi]
11. return false;
12. return true;

Figure 4:Consistency check via rule characterization

Since ϕ′1 (resp. ϕ2) is only applied to a tuple whose
country is China (resp. Canada), there does not exist any tu-
ple that can match both rules at the same time. Therefore,
based on Lemma 4, we have ϕ′1 and ϕ2 are consistent.

Also, it can be verified that ϕ′1 and ϕ3 are inconsistent.
Consider the following:

(i) Bϕ3 ∈ Xϕ′1
(i.e., country ∈ {country, capital}),

(ii) tp1 [Bϕ3 ] ∈ T−p3 [Bϕ3 ] (i.e., China ∈ {China}),
(iii) Bϕ′1

∈ Xϕ3 (i.e., capital ∈ {capital, city, conf}), and
(iv) tp3 [Bϕ′1

] ∈ T−p1 [Bϕ′1
] (i.e., Tokyo ∈ {Shanghai,

Hongkong, Tokyo}).
Hence, these two rules will lead to different fixes, which is

captured by case 2(c). 2

Algorithm. The algorithm to check whether a set of fixing
rules is consistent via rule characterization, referred to as
isConsistr, is given in Fig. 4. It takes Σ as input, and returns
a boolean value, where true indicates that Σ is consistent and
false otherwise.

It enumerates all pairs of distinct rules (lines 1-11). If
any pair is inconsistent, it returns false (lines 5,7,9,11); oth-
erwise, it reports that Σ is consistent (line 12). It covers
all the cases that two rules can be inconsistent, i.e., case 1
(lines 2-5), case 2(a) (lines 6-7), case 2(b) (lines 8-9) and
case 2(c) (lines 10-11). Note that in case 2(d), two rules are
trivially consistent. Hence, there is no need to investigate
such case.

Correctness & complexity. From the analysis above,
isConsistr covers all the cases that two rules can be inconsis-
tent. Thus, it is proved to be correct based on Proposition 3
and Lemma 4. In terms of complexity, we can use a hash
table to check that whether a value matches some nega-
tive pattern in constant time. Since isConsistr enumerates
all pairs of rules, its time complexity is O(size(Σ)2), where
size(Σ) is the size of Σ.

5.3 Resolving Inconsistent Rules
When fixing rules are inconsistent, it may lead to con-

flicting repairing results. In this section, we discuss how to
resolve inconsistent fixing rules.

Consider two inconsistent rules, ϕ′1 and ϕ3, in Example 10.
Fig. 5 highlighted the values that result in a conflict. A
conservative algorithm is to remove all the rules that are in
conflicts. This process ensures termination since the number
of rules is strictly decreasing, until the set of rules is consis-

country {capital−} capital+

ϕ′
1: China Shanghai Beijing

Hongkong

Tokyo

capital city conf {country−} country+

ϕ3: Tokyo Tokyo ICDE China Japan

Figure 5: Illustrations in resolving conflicts

tent or becomes empty. Although the bright side is that the
remaining rules are consistent, the problem is that this will
also remove some useful rules (e.g., ϕ3). It is difficult for
automatic algorithms to solve such semantic problem well.

Hence, in order to obtain high quality rules, we ask ex-
perts to examine rules that are in conflicts. For example, the
experts can naturally remove Tokyo from the negative pat-
terns of ϕ′1, since one cannot judge, given (China, Tokyo),
which attribute is wrong. This will result in a modified rule
ϕ1 (see Example 3), which is consistent with ϕ3. Note that
in order to ensure termination, we only allow the experts
to remove some negative patterns (e.g., from ϕ′1 to ϕ1), or
remove some fixing rules, without adding values.

6. REPAIRING WITH FIXING RULES
After completing our study of finding a set of consistent

fixing rules, the next most important item on nearly every-
body’s wish list is how to use these rules to repair data.

In the following, we first present a chase-based algorithm
to repair one tuple (Section 6.1), with time complexity in
O(size(Σ)|R|). We also present a fast algorithm (Section 6.2)
running in O(size(Σ)) time for repairing one tuple.

6.1 Chase-based Algorithm
When a given set Σ of fixing rules is consistent, for any t,

applying Σ to t will get a unique fix (see Section 3.2), which
is also known as the Church-Rosser property [1]. We next
present an algorithm to repair a tuple with consistent fixing
rules. It iteratively picks a fixing rule that can be properly
applied, until a fix is reached.

Algorithm. The algorithm, referred to as cRepair, is shown
in Fig. 6. It takes as input a tuple t and a set Σ of consistent
fixing rules. It returns a repaired tuple t′ w.r.t. Σ.

The algorithm first initializes a set of assured attributes, a
set of fixing rules that can be possibly applied, a tuple to be
repaired, and a flag to indicate whether the tuple has been
changed (line 1). It then iteratively examines and applies
the rules to the tuple (lines 2-7). If there is a rule that can
be properly applied (line 5), it updates the tuple (line 6),
maintains the assured attributes and rules that can be used
correspondingly, and flags this change (line 7). It terminates
when no rule can be further properly applied (line 2), and
the repaired tuple will be returned (line 8).

Correctness & complexity. The correctness of cRepair is
inherently ensured by the Church-Rosser property, since Σ
is consistent. For the complexity, observe the following. The
outer loop (lines 2-7) iterates at most |R| times. For each
loop, it needs to scan each unused rule, and checks whether
it can be properly applied to the tuple. From these it follows
that Algorithm 6 runs in O(size(Σ)|R|) time.

6.2 A Fast Repairing Algorithm
Our next goal is to study how to improve the chase-based

procedure. One natural way is to consider how to avoid



Algorithm cRepair
Input: a tuple t, a set Σ of consistent fixing rules.
Output: a repaired tuple t′.

1. A := ∅; Γ := Σ; t′ := t; updated := true;
2. while updated do
3. updated := false;
4. for each ϕ ∈ Γ do
5. if t′ matches ϕ and Bϕ 6∈ A then

6. t′[Bϕ] := t+p [Bϕ] (by applying ϕ);
7. A :=A∪Xϕ∪{Bϕ}; Γ :=Γ\{ϕ}; updated := true;
8. return t′;

Figure 6: Chase-based repairing algorithm

repeatedly checking whether a rule is applicable, after each
update of the tuple being examined.

Note that a key property of employing fixing rules is that,
for each tuple, each rule can be applied only once. After a
rule is applied, in consequence, it will mark the attributes
associated with this rule as assured, and does not allow these
attributes to be changed any more (see Section 3.2).

Hence, two important steps are, after each value update,
to (i) efficiently identify the rules that cannot be applied,
and (ii) determine unused rules that can be possibly applied.

We employ two types of indices in order to perform the
above two targets. Inverted lists are used to achieve (i), and
hash counters are employed for (ii).

Before describing how to use these indices to design a fast
algorithm, we shall pause and define these indices, which is
important to understand the algorithm.

Inverted lists. Each inverted list is a mapping from a key to
a set Υ of fixing rules. Each key is a pair (A, a) where A is
an attribute and a is a constant value. Each fixing rule ϕ in
the set Υ satisfies A ∈ Xϕ and tp[A] = a.

For example, an inverted list w.r.t. ϕ1 in Example 3 is as:

country, China → ϕ1

Intuitively, when the country of some tuple is China, this
inverted list will help to identify that ϕ1 might be applicable.

Hash counters. It uses a hash map to maintain a counter for
each rule. More concretely, for each rule ϕ, the counter c(ϕ)
is a nonnegative integer, denoting the number of attributes
that a tuple agrees with tp[Xϕ].

For example, consider ϕ1 in Example 3 and r2 in Fig. 1.
We have c(ϕ1) = 1 w.r.t. tuple r2, since both r2[country] and
tp1 [country] are China. As another example, consider r4 in
Fig. 1, we have c(ϕ1) = 0 w.r.t. tuple r4, since r4[country] =
Canada but tp1 [country] = China.

We are now ready to present a fast algorithm by using the
two indices introduced above. Note that inverted lists are
built only once for a given Σ, and keep unchanged for all
tuples. The hash counters will be initialized to zero for the
process of repairing each new tuple.

Algorithm. The algorithm lRepair is given in Fig. 7. It
takes as input a tuple t, a set Σ of consistent fixing rules,
and inverted lists I. It returns a repaired tuple t′ w.r.t. Σ.

It first initializes a set of assured attributes, a set of fixing
rules to be used, and a tuple to be repaired (line 1). It
also clears the counters for all rules (line 2). It then uses
inverted lists to initialize the counters (lines 3-5). After the
counters are initialized, it checks and maintains a list of rules
that might be used (lines 6-7), and uses a chase process to

Algorithm lRepair
Input: tuple t of R, consistent Σ, inverted lists I.
Output: a repaired tuple t′.

1. A := ∅; Γ := ∅; t′ := t;
2. for each ϕ ∈ Σ do c(ϕ) := 0;
3. for each A ∈ R do
4. for each ϕ in I(A, t[A]) do
5. c(ϕ) := c(ϕ) + 1;
6. for each ϕ ∈ Σ do
7. if c(ϕ) = |Xϕ| then Γ := Γ ∪ {ϕ};
8. while Γ 6= ∅ do
9. randomly pick ϕ from Γ;
10. if t′ matches ϕ and Bϕ 6∈ A then

11. update t′ by applying ϕ such that t′[Bϕ] = t+p [Bϕ];
12. A := A ∪Xϕ ∪ {Bϕ};
13. for each ϕ′ ∈ I(Bϕ, t′[Bϕ]) do
14. c(ϕ′) := c(ϕ′) + 1;
15. if c(ϕ′) = |Xϕ′ | then Γ := Γ ∪ {ϕ′};
16. Γ := Γ \ {ϕ};
17. return t′;

Figure 7: A linear repairing algorithm

repair the tuple (lines 8-16), and returns the repaired tuple
(line 17).

During the process (lines 8-16), it first randomly picks a
rule that might be used (line 9). The rule will be applied if it
is verified to be applicable (lines 10-11). The set of attributes
that is assured correct is increased correspondingly (line 12).
The counters will be recalculated (lines 13-14). Moreover,
if new rules might be used due to this update, it will be
identified (line 15). The rule that has been checked will be
removed (line 16), no matter it is applicable or not.

Observe the following two cases. (i) If a rule is removed
after being applied at line 16 (i.e., line 10 gives a true), it
cannot be used again and will not be checked at lines 13-
15. (ii) If a rule ϕ is removed without being applied at
line 16 (i.e., line 10 gives a false), it cannot be used either
at lines 13-15. The reason is that: for any rule ϕ, if ϕ cannot
be properly applied to t′, any update on attribute Bϕ will
mark it as assured, such that ϕ cannot be properly applied
afterwards. From the above (i) and (ii), it follows that it is
safe to remove a rule from Γ, after it has been checked, once
and for all.

Correctness. Note that Σ is consistent, we only need to
prove the repaired tuple t′ is a fix of t. This can be proved
based on (1) at any point, Γ includes all fixing rules that
might match the given tuple; and (2) each fixing rule is
added into Γ at most once. Hence, the algorithm terminates
until it reaches a fixpoint when Γ is empty.

Complexity. It is clear that the three loops (line 2, lines 3-
5 and lines 6-7) all run in time linear to size(Σ). Next let
us consider the while loop (lines 8-16). Observe that each
rule ϕ will be checked in the inner loop (lines 13-15) up
to |Xϕ| times, by using the inverted lists and hash coun-
ters, independent of the number of outer loop iterated. The
other lines of this while loop can be done in constant time.
Putting together, the total time complexity of the algorithm
is O(size(Σ)).

We next show by example how Algorithm lRepair works.

Example 11: Consider Travel data D in Fig. 1, rules ϕ1, ϕ2

in Example 3 and rule ϕ3 in Example 8. In order to better
understand the chase process, we introduce another rule:

ϕ4: (([capital, conf], [Beijing, ICDE]), (city, {Hongkong})



pkeyp plistp

country, China → ϕ1 X
country, Canada → ϕ2 X
conf, ICDE → ϕ3, ϕ4 X
capital, Tokyo → ϕ3 X
city, Tokyo → ϕ3 X
capital, Beijing → ϕ4 X

(a) Inverted listsX

r1: Γ = {ϕ1}, c(ϕ1) = 1

itr1: r′1 = r1, Γ = ∅

r2: Γ={ϕ1}, c(ϕ1, ϕ3, ϕ4)=1;

itr1: r′2[capital]= Beijing

c(ϕ3)=1, c(ϕ4)=2, Γ={ϕ4};

itr2: r′2[city]= Shanghai , Γ = ∅

r3: Γ={ϕ3}, c(ϕ3)=3;

itr1: r′3[country]= Japan , Γ = ∅

r4: Γ={ϕ2}, c(ϕ2)=1;

itr1: r′4[capital]= Ottawa , Γ = ∅

Figure 8: A running example

→ Shanghai

Rule ϕ4 states that: for t in relation Travel, if the conf
is ICDE, held at some country whose capital is Beijing, but
the city is Hongkong, its city should be Shanghai. This holds
since ICDE was held in China only once at 2009, in Shanghai

but never in Hongkong.
Given the four fixing rules ϕ1–ϕ4, the corresponding in-

verted lists are given in Fig. 8(a). For instance, the third
key (conf, ICDE) links to rules ϕ3 and ϕ4, since conf ∈ Xϕ3

(i.e., {capital, city, conf}) and tp3 [conf] = ICDE; and more-
over, conf ∈ Xϕ4 (i.e., {capital, conf}) and tp4 [conf] = ICDE.
The other inverted lists are built similarly.

Now we show how the algorithm works over tuples r1 to
r4, which is also depicted in Fig. 8. Here, we highlight these
tuples in two colors, where the green color means that the
tuple is clean (i.e., r1), while the red color represents the
tuples containing errors (i.e., r2, r3 and r4).

r1: It initializes (lines 1-7) and finds that ϕ1 may be ap-

plied, maintained in Γ. In the first iteration (lines 8-16), it
finds that ϕ1 cannot be applied, since r1[capital] is Beijing,
which is not in the negative patterns {Shanghai, Hongkong}
of ϕ1. Also, no other rules can be applied. It terminates with
tuple r1 unchanged. Actually, r1 is a clean tuple.

r2: It initializes and finds that ϕ1 might be applied. In the
first iteration (lines 8-16), rule ϕ1 is applied to r2 and up-
dates r2[capital] to Beijing. Consequently, it uses inverted
lists (line 13) to increase the counter of ϕ4 (line 14) and
finds that ϕ4 might be used (line 15). In the second itera-
tion, rule ϕ1 is applied and updates r2[city] to Shanghai. It
then terminates since no other rules can be applied.

r3: It initializes and finds that ϕ3 might be applied. In the
first iteration, rule ϕ3 is applied and updates r3[coutry] to
Japan. It then terminates, since no more applicable rules.

r4: It initializes and finds that ϕ2 might be applied. In the
first iteration, rule ϕ2 is applied and updates r4[capital] to
Ottawa. It will then terminate.

At this point, we see that all the fours errors shown in
Fig. 1 have been corrected, as highlighted in Fig. 8. 2

7. EXPERIMENTAL STUDY
We conducted experiments with both real-life and syn-

thetic data to examine our algorithms and help us discover
the deficiency of fixing rules and algorithms to be improved.
Specifically, we evaluated (1) the efficiency of consistency
checking for fixing rules; (2) the accuracy of our data re-

pairing algorithms with fixing rules; and (3) the efficiency of
data repairing algorithms using fixing rules.

It is worth noting that the purpose of these experiments is
to test, when given high quality fixing rules, how they can be
used to automatically repair data with high dependability.

7.1 Experimental Setting
Experimental data. We used real-life and synthetic data.

(1) hosp was taken from us Department of Health & Hu-
man Services1. It has 115K records with the following
attributes: Provider Number (PN), Hospital Name (HN),
address1, address2, address3, city, state, zip, county, Pho-
neNumber (phn), HospitalType (ht), HospitalOwner (ho),
EmergencyService (es) Measure Code (MC), Measure Name
(MN), condition, and stateAvg.

(2) uis data was generated by a modified version of the uis
Database generator2. It produces a mailing list that has
the following schema: RecordID, ssn, FirstName (fname),
MiddleInit (minit), LastName (lname), stnum, stadd, apt,
city, state, zip. We generated 15K records.

Dirty data generation. We treated clean datasets as the
ground truth. Dirty data was generated by adding noise
only to the attributes that are related to some integrity con-
straints, which is controlled by noise rate (10% by default).
We introduced two types of noises: typos and errors from
the active domain.

Fixing rules generation. We next discuss how fixing rules
can be obtained.

Seed fixing rule generation. Since each fixing rule is defined
on semantically related attributes, we started with known
dependencies (e.g., FDs for our testing). We first detected
violations of given FDs, and presented them to experts. The
experts produced several fixing rules as seeds (or samples),
based on their understanding of these violations.

Rule enrichment. Given seed fixing rules, we enriched them
by only enlarging their negative patterns, via extracting new
negative patterns from related tables in the same domain.
For instance, consider Example 2. If users provide a fixing
rule that takes China as the evidence pattern, and some Chi-
nese cities (e.g., Shanghai, Hongkong) other than Beijing

as negative patterns, one can enlarge its negative patterns
by extracting cities from a table about Chinese cities. Note
that when an appropriate ontology is available, we can ex-
tract the above information as evidence patterns, negative
patterns and facts. In such case, the generated fixing rules
are usually general. Consequently, they can be applied to
multiple databases.

In the experiment, we generated 1000 fixing rules for hosp
data 100 fixing rules for uis data.

Measuring quality. To assess the accuracy of data clean-
ing algorithms, we use precision and recall, where precision
is the ratio of corrected attribute values to the number of
all the attributes that are updated, and recall is the ratio
of corrected attribute values to the number of all erroneous
attribute values.

Remark. We mainly compare with the state-of-the-art au-
tomated data cleaning techniques. Note that they are de-
signed for a slightly different target: computing a consistent

1http://www.hospitalcompare.hhs.gov/
2http://www.cs.utexas.edu/users/ml/riddle/data.html



database. We consider it a relatively fair comparison, since
all fixing rules we generated are from FD violations. In other
words, the fixing rules and the FDs used are defined on ex-
actly the same set of attributes. We employed the following
FDs for hosp and uis data, respectively.

FDs for hosp
PN → HN, address1, address2, address3, city, state, zip,

county, phn, ht, ho, es
phn → zip, city, state, address1, address2, address3
MC → MN, condition
PN,MC → stateAvg
state,MC → stateAvg
FDs for uis
ssn → fname, minit, lname, stnum, stadd, apt, city, state, zip
fname,minit,lname → ssn, stnum, stadd, apt, city, state, zip
zip → state, city

Algorithms. We have implemented the following algo-
rithms in C++: (1) isConsistt: the algorithm for checking
consistency based on tuple enumeration (Section 5.2); (2)
isConsistr: the algorithm for checking consistency based on
rule characterization (Fig. 4 in Section 5.2); (3) cRepair:
the basic chase-based algorithm for repairing with fixing
rules (see Fig. 6); and (4) lRepair: the fast repairing al-
gorithm (see Fig. 7). Moreover, for comparison, we have
implemented two algorithms for FD repairing, a cost-based
heuristic method [7], referred to as Heu, and a approach for
cardinality set minimal [5], referred to as Csm. Both ap-
proaches were implemented in Java.

All experiments were conducted on a Windows machine
with a 3.0GHz Intel CPU and 4GB of memory.

7.2 Experimental Results
We next report our findings from our experimental study.

Exp-1: Efficiency of checking consistency. We eval-
uated the efficiency of checking consistency by varying the
number of rules. The results for hosp (resp. uis) are shown
in Fig. 9(a) (resp. Fig. 9(b)). The x-axis is the number of
rules multiplied by 100 (resp. 10) for hosp (resp. uis), and
the y-axis is the running time in millisecond (msec).

For either isConsistt or isConsistr, we plotted its worst
case, i.e., checking all pairs of rules, as well as its 10 real
cases where it terminated when some pair was detected to
be inconsistent. For example, in Fig. 9(a), the big circle for
x = 2 was for checking 200 rules in the worst case, while the
10 small circles below it were for real cases. In Fig. 9(b), real
cases are the same as the worst case, since the 100 rules are
consistent and all pairs of distinct rules have to be checked.

These figures show that to check consistency of fixing
rules, the algorithm with tuple enumeration (isConsistt) is
slower, as expected. The reason is that enumerating tuples
for two rules is more costly than characterizing two rules.

In addition, this set of experiment validated that the con-
sistency of fixing rules can be checked efficiently. For ex-
ample, it only needs 12 seconds to check the consistency of
1000*1000 pairs of rules, i.e., the top right point in Fig. 9(a).

The result of this study indicates that it is feasible to check
consistency for a reasonably large set of fixing rules.

Exp-2: Accuracy. In this set of experiments, we will study
the following. (a) The effect of different data errors (i.e.,
typos or errors from active domain) for repairing algorithms.
(b) The influence of fixing rules w.r.t. their sizes. (c) Effect
of negative patterns. (d) Comparison with editing rules. We
use Fix to represent repairing algorithms with fixing rules.
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Figure 9: Efficiency for checking consistency

(a) Noise from active domain. Recall that noise was
obtained by either introducing typos to an attribute value
or changing an attribute value to another one from the ac-
tive domain of that specific attribute. For example, an error
for Ottawa could be Ottawo (i.e., a typo) or Beijing (i.e., a
value from active domain).

Precision. We fixed the noise rate at 10%, and varied the
percentage of typos from 0% to 100% by a step of 10% (x-
axis in both charts from Figs. 10(a) and 10(e) for hosp and
uis, respectively). Both figures showed that our method
using fixing rules performed dependable fixes (i.e., high pre-
cision), and was not sensitive to types of errors. While for
the existing algorithms Heu and Csm, they had lower preci-
sion when more errors were from the active domain. The
reason is that for such errors, heuristic methods would erro-
neously connect some tuples as related to violations, which
might link previously irrelevant tuples and complicate the
process when fixing the data. Indeed, however, both Heu and
Csm computed a consistent database, as targeted.

Note that fixing rules also made mistakes, e.g., the preci-
sion in Fig. 10(a) is not 100%, which means some changes
were not correct. The reason is that, when more er-
rors are from the active domain (e.g., typo rate is 0 in
Fig. 10(a)), it will mislead fixing rules to make decisions.
For example, consider the two rules in Fig. 3, if the correct
(country, capital) values of some tuple are (China, Shanghai)
but were changed by using values from the active domain
to (Canada, Toronto), using fixing rules will make mistakes.
Although this is not very common in practice, it deserves a
further study to improve our algorithms in the future.

Recall. In order to better understand the behavior of these
algorithms, Figs. 10(b) and 10(f) show the recall correspond-
ing to Figs. 10(a) and 10(e), respectively. Not surprisingly,
our algorithm did not outperform existing approaches in
terms of recall. This is because heuristic approaches would
repair some potentially erroneous values, but at the tradeoff
of decreasing precision. Although our method was relatively
low in recall, we did our best to ensure the precision, instead
of repairing as more errors as possible. Hence, when recall
is a major requirement for some system, existing heuristic
methods can be used after fixing rules being applied, to com-
pute a consistent database.

Fig. 10(f) shows that the recall is very low (below 8%)
for all methods. The reason is that, the uis dataset gener-
ated has few repeated patterns w.r.t. each FD. When noise
was introduced, many errors cannot be detected, hence no
method can repair them. Note, however, that recall can be
improved by learning more rules as shown below.

(b) Varying the number of fixing rules. We studied
the accuracy of our repairing algorithms by varying the num-
ber of fixing rules. We fixed noise rate at 10% and half of
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Figure 10: Accuracy of data repairing
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Figure 11: Evaluation for negative patterns (hosp)

them are typos. For hosp, we varied the number of rules
from 100 to 1000, and reported the recall and precision in
Fig. 10(c) and Fig. 10(d), respectively. For uis, we varied
the number of rules from 10 to 100, and reported the results
in Fig. 10(g) and Fig. 10(h), respectively. For Heu and Csm,
as the typo rate was fixed, their precision and recall values
were horizontal lines.

The experimental results indicate that when more fixing
rules are available, our approach can achieve better recall,
while keeping a good precision, as expected.

(c) Evaluation for negative patterns. To further inves-
tigate fixing rules, we sorted the fixing rules of hosp based
on the number of negative patterns, and plotted every 30
points in Fig. 11(a). We see that most of the fixing rules have
a small number of negative patterns. For instance, around
80% of fixing rules contain two negative patterns. We added
up all negative patterns, and evaluated the accuracy of our
repairing algorithms by varying the number of negative pat-
terns for all rules in total. Figure 11(b) shows the precision
and recall of our approach. We can see that adding more
negative patterns can lead to a better recall while keeping
a high precision. This experimental result further validates
the dependable feature of fixing rules.

(d) Comparison with editing rules. We also compared

our approach with editing rules [19]. Although editing rules
can repair data that is guaranteed to be correct, they are
measured by the number of user interactions per tuple. That
is, for each tuple and for each editing rule to be applied, the
users have to be asked. To this purpose, we evaluated the
number of errors that can be corrected by every fixing rule
(see Fig. 12(a)) using hosp data with 100 rules and 10%
dirty rate, where the x-axis is for fixing rules and the y-axis
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is the number of errors they can correct. This experiment
shows that a single fixing rule was able to repair errors in
more than fifty tuples, but if we employ editing rules to
repair these errors, the approach has to interact with users
over fifty times.

Moreover, we encoded data values from master data into
editing rules, to make it an automated rule. Note that error
information is not in master data, e.g., the negative patterns
in fixing rules, which cannot be encoded. Hence, we removed
negative patterns in fixing rules, to simulate editing rules.
Specifically, each time when seeing an evidence pattern, it
simulated users by saying yes, and then updated the right
hand side value to the fact. The experimental results are
shown in Fig. 12(b), where Fix (resp. Edit) indicates fix-
ing rules (resp. editing rules). The reason that fixing rules
have better precision and recall is that, if we have errors in
the right hand side of such rules, (automated) editing rules
can correct them. However, if there are errors in the left
hand side, they will introduce new errors by treating these
errors as correct values, resulting in lower precision and in
consequence, lower recall.

Exp-3: Efficiency of repairing algorithms. In this last
set of experiments, we study the efficiency of our data re-
pairing with fixing rules. As they are linear in data size, we
evaluated their efficiency by varying the number of rules.

The results for hosp and uis are given in Fig. 13(a) and
Fig. 13(b), respectively. In both figures, the x-axis is for the
number of rules and the y-axis is for running time. These
two figures show that algorithm lRepair is more efficient. For
example, it ran in less than 2 seconds to repair 115K tuples,
using 1000 rules (the bottom right node in Fig. 13(a)). In
Fig. 13(b), cRepair was faster only when the number of rules



0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

T
im

e 
(s

ec
)

# of rules (* 100)

cRepair
lRepair

(a) hosp (varying |Σ|)

 0

 0.05

 0.1

 0.15

 0.2

1 2 3 4 5 6 7 8 9 10

T
im

e 
(s

ec
)

# of rules (* 10)

cRepair
lRepair

(b) uis (varying |Σ|)
Figure 13: Efficiency for data repairing

was very small (i.e., 10), where the reason is the extra over-
head of using inverted lists and hash counters. However, in
general, lRepair was much faster, since it only examined the
rules that can be used instead of checking all rules.

We also compared our fast repairing algorithm lRepair
with Heu and Csm. Using both hosp and uis data, the results
are given in the table below. It shows that lRepair runs much
faster than the others. The reasons are twofold: (1) lRepair
detects errors on each tuple individually, while the others
need to consider a combination of two tuples for violation
detection; and (2) lRepair repairs each tuple in linear time,
while Heu and Csm repair data by holistically considering all
violations, which have much higher time complexity.

lRepair Heu Csm
hosp 1.7 sec 580 sec 421 sec

uis 0.05 sec 13 sec 8 sec

Summary. We found the following from the above exper-
iments. (a) It is efficient to detect whether a set of fixing
rules is consistent (Exp-1). (b) Data repairing using fixing
rules is dependable, i.e., they repair data errors with high
precision (Exp-2). (c) The recall of using fixing rules can
be improved when more fixing rules are available (Exp-2).
(d) It is efficient to repair data via fixing rules, which reveals
its potential to be used for large datasets (Exp-3).

8. CONCLUSION AND FUTURE WORK
We have proposed a novel class of data cleaning rules,

namely, fixing rules, that (1) compared with data depen-
dencies used in data cleaning, are able to find dependable
fixes for input tuples, without using heuristic solutions; and
(2) differ from editing rules, that are able to repair data
automatically without any user involvement. We have iden-
tified fundamental problems for deciding whether a set of
fixing rules is consistent or redundant, and established their
complexity bounds. We have proposed efficient algorithms
for checking consistency, and discussed strategies to resolve
inconsistent fixing rules. We have also presented data repair-
ing algorithms by capitalizing on fixing rules. Our experi-
mental results with real-life and synthetic data have verified
the effectiveness and efficiency of the proposed rules and the
presented algorithms. These yield a promising method for
automated and dependable data repairing.

The study of automated and dependable data repairing is
still in its infancy. This research is just a first attempt to
tackle this problem, and it has thrown up many questions
in need of further investigation. (1) Rule discovery. Our
techniques in the paper allow users to define fixing rules
manually, or generate rules using examples. We are planning
to design algorithm to automatically discover fixing rules.
(2) Interaction with other data quality rules. A challenging
topic is to explore the interaction between fixing rules and
other data quality and rules, such as CFDs, MDs, editing
rules, and the users.
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